
Making the Case for
Refactoring to Non-Technical

Managers

Adam Juda
TapRun, LLC

https://confoo.ca/en/yul2017/session/making-the-case-for-refactoring-to-non-technical-managers
https://confoo.ca/en/yul2017/session/making-the-case-for-refactoring-to-non-technical-managers
https://confoo.ca/en/yul2017/session/making-the-case-for-refactoring-to-non-technical-managers
https://confoo.ca/en/yul2017/session/making-the-case-for-refactoring-to-non-technical-managers
https://taprun.com
https://taprun.com

Who am I?

Adam Juda, MSE, MBA, PMP

● Programmer
● Project Manager
● Consultant (TapRun, LLC)

Outline

● What's technical debt?
● How to ask
● Whom to ask
● When to ask
● Q&A

What is technical debt?

Bad software

No coherent design Bad documentation Slow build process

Broken tests Huge classes High cyclomatic
complexity

Huge method signatures Duplicated code Not following style guide

Large methods Tight coupling Low cohesion

Low maintainability Low reliability Low scalability

How is it bad?

Traditional view of technical debt

Behind
Schedule

Traditional view of technical debt

Behind
Schedule Incur Debt

Traditional view of technical debt

Behind
Schedule Incur Debt

Reduced
Productivity

Traditional view of technical debt

Behind
Schedule Incur Debt

Not Enough
Time

Reduced
Productivity

Traditional view of technical debt

Behind
Schedule Incur Debt

Not Enough
Time

Reduced
Productivity

Traditional view of technical debt

Behind
Schedule Incur Debt

Not Enough
Time

Reduced
Productivity

Seven common approaches

Approach #0: I wanna (aka the mountain)

No.

Approach #1: Complaining

● It's painful to work with.
● We gotta, it's gross!
● The code smells...

Stop
whining.

Approach #2: Begging

Please! I'll work extra hard for you.
Let me fix the code!

A favor?
Hmm...

Approach #3: Making analogies

● A car that hasn't had an oil change
● A fishtank that hasn't been filtered
● A litter box that hasn't been emptied

An employee who
wants to get fired

Approach #4: Quantitative analysis

The code has a cyclomatic
complexity of 40!

...

Húsið er á eldinn!

Your house is on fire!

Approach #5: Hypotheticals

● Morale might go down
● Our software might crash
● We might be late

Everything might
be fine.

Approach #6: Be a ninja!

AKA "Be a
Professional"

What would you
say you do here?

Technical debt: Another definition

A trade-off made in order to meet a
business objective

"If you are involved in a game,
everything ends up being a set of

trade-offs."
-- Gabe Newell

(co-founder of Valve)

$field1 = '/^def*re+o?/';

preg_match($field1, $field2, $field3,
PREG_OFFSET_CAPTURE, 3);

$field3 == $non_field + $field_field ? 7 : 3;

$ro->sn($field3 . $field1).extt(4, $pep);

"Business staff thinks we can load up technical
debt because they never truly see the

consequences."

-- Steve McConnell

"But those consequences are there… they are
just never expressed in a way that the business

staff can engage with."

-- Steve McConnell

 $ $$$Refactor

But I'm just a programmer!

http://xkcd.com/303/

Step #1: Gather information

● Labor - $200/hr
● Build process - 2 hrs
● Builds / year - 100
● Time to rewrite: 40 hrs

Step #2: Calculate the costs

Cost to fix = $200 * 40 hours

 = $8,000

Refactor$8K ?

Step #3: Calculate the benefits

Savings = $200 * 2 hrs * 100 builds

 = $40,000

Refactor$8K $40K

Dollarize when possible

● Labor
● Server time
● Risk of rework
● Employee morale?

 Debt
The Scrum ^ Backlog

The case for debt

● Debt Name: ____________________
● Date: _________________________
● Short Term Savings: _____________
● Long Term Cost: _________________
● Cost to Repair: __________________
● Notes: _________________________

There's an unexpected benefit...

Under 3
minutes?

Just do it.

Whom should you ask?

Whom should you ask?

● Controls resources
● Will receive substantial value

Let's do some more math...

● $25,000 extra to each project
● 100 projects use it
● $75,000 to refactor

Cost to fix: $75,000

Savings: $25,000 * 100 == $2.5 million

Refactor$75K $2.5M

Refactor$75K $2.5M

● $25,000 extra to each project
● 100 projects use it
● $75,000 to refactor

Refactor$75K $25K

Project managers vs product owners...

● Productivity?
● Morale?
● Maintenance costs?
● User satisfaction?
● Long-term strategy?
● Long-term risk?

When should you ask?

What others say...

● At the beginning of a project
● At the end of a project
● When technical debt is highest

What I say

● When payback time is smallest
● When payback will be obvious
● When ROI is largest

ROI

Flagship
software Discontinued

software

For some values of $1:
$1 != $1

Traditional view of technical debt

Behind
Schedule Incur Debt

Not Enough
Time

Reduced
Productivity

Improved view of technical debt

Debt
Worth it? Incur Debt

Pay Debt
(if worth it)

Increased
Successes

This won't work well if...

● Lack of trust / honesty
● Arbitrary constraints
● Unwillingness to improve
● Incentive not to improve

The five levels of debt monetization

Level 0: Establish open communication

Level 1: Communicate business goals

Level 2: Present options

Level 3: Dollarize options

Level 4: Groom & optimize

Summary

● Technical debt isn't always bad
● Find the right section of code
● Find the right person
● Speak to his incentives
● Speak at the right time

Adam Juda - TapRun, LLC

● adam@TapRun.com
● https://TapRun.com

Contact Me

Backup Slides

Martin Fowler's types of debt

Reckless

Deliberate

Prudent

Inadvertent

No time for
design

The consequences
are worth it

What's
layering?

Only now do we
understand it

Martin Fowler's types of debt

Reckless

Deliberate

Prudent

Inadvertent

No time for
design

The consequences
are worth it

What's
layering?

Only now do we
understand it

No Silver Bullet: Essence
and Accidents of
Software Engineering

In a matrix environment...

You can tax the projects

ROI

Cost

Worthwhile

Not
worthwhile

Debt
Removal

Added Value

Debt
Removal

New
Functionality

Estimating with uncertainty

(optimistic +

4* average +

pessimistic) / 6

